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East-Central Florida Transient Expanded (ECFTX) V2.0
Model Report

CHAPTER 1 - INTRODUCTION

1.1 Background

The East Central Florida Transient Expanded (ECFTX) model was developed in 2020 to support
central Florida regional water supply planning and used as a primary tool to estimate groundwater
availability and assess water supply and management strategies in the Central Florida Water
Initiative (CFWI) planning region (CFWI, 2020). The ECFTX model domain covers about a
23,800-square-mile area of central Florida, including the entire CFWI area and extends from
central Volusia County (to the north) to the Charlotte-Desoto County line (to the south) and from
the Atlantic Ocean (to the east) to the Gulf of Mexico (to the west) (Figure 1.1). The model has
603 rows and 740 columns with a uniform grid spacing of 1,250 feet (CFWI HAT, 2020).
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Figure 1.1. ECFTX Model Domain

The ECFTX model is a fully three-dimensional groundwater flow model using the MODFLOW
NWT (Niswonger, et al., 2011) computer code. All elevation data for the model are in a vertical
datum of NAVD 88. In general, for those areas of the model where chloride concentrations exceed
5,000 mg/l (or 10,000 mg/I total dissolved solids), the layers were inactivated, and general head
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boundaries were set along the edge of the active areas (CFWI HAT, 2020). The model consists
of 11 hydrostratigraphic layers — layer 1 is the Surficial aquifer (SA), layer 2 is the Intermediate
Aquifer System/Confining Unit (IAS/ICU), layers 3-5 are the Upper Floridan aquifer (UFA), layers
6-8 are Middle Confining Unit (MCU | and II), and layers 9-11 are the Lower Floridan aquifer
(LFA) (Figure 1.2).

Model Layer Hydrostratigraphic Conceptualization

surficial
aquifer

intermediate
confiningunit

surficial aquifer

intermediate confining unit

9 Ocala low-permeability zone (OCAPIpz)

Avon Park high-permeability zone (APhpz)

middle confining unit |

Bujuuod 3pPIA

Figure 1.2. ECFTX Model layers (CFWI HAT, 2020).

The ECFTX is a transient model simulating monthly groundwater flows and levels from 2004
through 2014 with an average 2003 steady-state condition serving as the initial conditions. It was
calibrated to match observed flows and levels in 2003 (annual averages) and 2004 through 2012
(monthly averages). The years 2013-2014 were used as the verification period.

1.2 Objectives

The main purpose of the ECFTX model was to support water supply planning decisions. To make
the model a more suitable tool for regulatory decisions and improve the model performance in the
areas where critical minimum flows and levels (MFL) water bodies are located, a groundwater
modeling team from three districts (SIRWMD, SWFWMD and SFWMD) reviewed the model and
identified an area within the CFWI portion of the domain where the original calibration could be
improved. This area primarily included the Wekiva River springs groundwater contributing basin
and Seminole County, shown in Figure 1.3 as circled areas.
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Figure 1.3 Areas of concern

As a result of more thorough review of the local-scale data in these areas, the team also
identified opportunities for refinements to the following:

Spring pool elevations

Wekiva River stages

Groundwater level targets near Wekiwa Springs
Layering of pumping wells

To facilitate the recalibration effort, a local groundwater basin (focus area) was delineated using
the Wekiva River groundwater contributing basin and the USGS May/July 2010 UFA
potentiometric surface (Figure 1.4). The recalibration effort was conducted only in the focus
area with a goal to improve the model’s ability to better match observed water levels and spring
flows. In addition, the horizonal hydraulic conductivity (Kh) for the IAS/ICU (layer 2) in the
Southern Water Use Caution Area (SWUCA) of SWFWMD outside the focus area was modified
to improve accuracy of the model conceptualization, model convergence, and run time
(Appendix A).

This report describes the model updates, recalibration approach and results, and a sensitivity
analysis to better understand the influence of recharge on model calibration. The original and
recalibrated models are referred as ECFTX v1.0 and ECFTX v2.0, respectively, in this
document.
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CHAPTER 2 - MODEL UPDATES

ECFTX model updates, generally limited to the focus area as shown in Figure 1.4, included
modifications to spring pool elevations, river stages, and groundwater level targets. Minor
adjustments were also made to recharge, maximum saturated evapotranspiration (MSET), and
groundwater withdrawals. Changes to the model outside of the focus area included updates to
layer 2 horizontal hydraulic conductivity (Kh) in the region where the Intermediate aquifer system
(IAS) is present.

2.1 Spring pool elevations

A review of the springs in the model indicated the pool elevations assigned to several springs
within or near the focus area needed to be modified due to an older vertical elevation datum, feet
NGVD29, previously used. Therefore, pool elevations were updated to reflect the appropriate
vertical datum, feet NAVD88, for the model simulation period of 2003 to 2014. Figure 2.1 shows
the locations of the 12 springs where the pool elevations were revised in the model and Table 2.1
includes the change in updated 2003 to 2014 average pool elevation at each spring. Of the springs
with revised pool elevations, Alexander Spring was the only spring categorized as a magnitude 1
spring (with a discharge at or greater than 100 cfs). The remaining revised springs were of
magnitudes 2 or 3 and were mostly within the Wekiva River springshed, apart from Gemini
Springs and Green Spring, which were outside of the springshed but within the focus area (Figure
2.1).

Table 2.1. The revised springs

ECFTX V1.0 ECFTX V2.0
Name D Magnitude 2003 to 2014 A_verage 2003 to 2014 A_verage

Pool Elevation Pool Elevation

(Feet, NAVD88) (Feet, NAVDS88)
Sanlando Springs 1736 2 26.20 25.59
Palm Springs 1456 3 22.47 21.43
Starbuck Spring 1916 2 21.02 19.97
Miami Spring 4109 3 15.21 14.20
Wekiwa Spring 2353 2 13.29 12.17
Holiday Spring 841 3 65.03 67.03
Bugg Spring 256 2 60.51 61.67
Rock Springs 1624 2 26.26 25.16
Green Spring 730 3 11.34 10.40
Gemini Springs #2 4163 2 2.61 1.68
Gemini Springs #1 4161 2 2.61 1.23
Alexander Spring 16 1 2.95 9.41
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Figure 2.1. Spring locations with revised pool elevations

2.2 Wekiva River stages

A comparison of modeled Wekiva River stages with the observed data, where available, indicated
the modeled stages needed to be modified at several locations in the river, likely due to data error
or the use of an old vertical elevation datum. The simulated stages from the Wekiva River HEC-
RAS model (SJIRWMD, 2019) were used to update river stages at cell locations representing the
Wekiva River in the model for the period of 2003 through 2014. Linear interpolation was used to
estimate the stages in between locations where HEC-RAS model data were available. At river
boundary cells where the stages were adjusted, the river bottom elevations were also adjusted to
maintain the depth assigned to each cell in ECFTX V1.0. Figure 2.2 shows the river boundary
cells representing the portion of the Wekiva River where stage was adjusted.
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Figure 2.2. Wekiva River cell locations where the river stage and bottom elevation were updated
in the model. The 2003 to 2014 revised stage in ECFTX V2.0 is shown on the left while the
stage in ECFTX V1.0 is shown on the right for comparison.

2.3 Groundwater level targets

Groundwater level targets in the focus area were reviewed for location accuracy and observation
values. Monitoring wells OR0547 and OR0548 are near Wekiwa Springs (Figure 2.3). OR0548 is
open to the shallow part of the UFA (model layer 3) and OR0547 is open to MCU_1 (model layer
6). The vertical head difference between these wells exceeds 20 feet. Our review of the head
observation (HOB) package indicated OR0548 was not utilized in the ECFTX v1.0 model
calibration and OR0547 well was assigned to the wrong model layer, layer 5. The HOB package
was modified by assigning OR0547 well to layer 6 and OR0548 well to layer 3. Additionally, the
model grid cell assigned to surficial aquifer monitoring well OR0894 near Prevatt Lake (Figure
2.3) was shifted 1 grid cell east (row 118 and column 382) to avoid the OR0894 grid cell
intersecting with a river boundary cell in the model (row 118 and column 381). This prevented the
simulated groundwater levels at the OR0894 grid cell from being strongly influenced by the
specified stage in the river cell.
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Figure 2.3. Locations of revised groundwater level calibration targets in the model.

2.4 Groundwater withdrawals

A review of groundwater withdrawals in the ECFTX model revealed several consumptive use
permits (CUPs) in SJRWMD required updated layer assignments due to inaccurate well
construction information used to assign the model layer in the MODFLOW well package. Thus,
the model layers in the well package were adjusted based on the updated well construction data
for the following CUPs: City of Casselberry (CUP 8284), City of Altamonte Springs (CUP 8372)
and the City of Eustis (CUP 84879). Review of well construction information at well
SJ 8284 15422 indicated that this well was constructed deeper than originally modelled and was
open to layers 5 through 9. Therefore, fluxes previously assigned to layers 3 and 4 at this well in
ECFTX v1.0 were redistributed to layers 5-9. Review of well construction information at wells
SJ 8284 15427, SJ 8284 15428, SJ 8372 15672, SJ _8372_19978 and SJ 8372_19979
indicated that fluxes previously assigned to layers 3-5 in ECFTX v1.0 needed to be redistributed
to layers 7-9. Review of well construction information at SJ_84879_ 34862 indicated that this well
is open to the basal UFA (layer 5) and not the LFA as modeled in ECFTX v1.0; therefore, the
model layer was adjusted.

2.5 Recharge and Maximum Saturated ET rates
Recharge and maximum saturated ET rates were set to zero at the grid cells representing the
Wekiva River in layer 1 of the model, shown in Figure 2.4, because the specified river stages in
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the model already accounted for the influences of actual recharge and ET on water levels. The
Wekiva River Basin was the primary focus for recalibration; therefore, this change was only
applied at the grid cells representing the Wekiva River. Recharge and ET in the model domain
outside of the Wekiva River remained at rates assigned to ECFTX V1.0 (CFWI HAT, 2020). It
should also be noted that this adjustment was made for more accurately calculating baseflows
within the Wekiva River Basin and had little or no effect on model results since river stages were
specified in the model.
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Figure 2.4. Locations where the recharge and ET rate in the model were assigned a value of 0
feet per day for all stress periods.
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2.6 Outside Focus Area updates

The Hawthorn aquifer system (HAS) (also more generally referred to as the intermediate aquifer
system) exists within an approximate 5,000-square-mile area of DeSoto, Sarasota, Hardee,
Manatee, and parts of Charlotte, Hillsborough, Highlands counties, and in the southwest portion
of Polk County within the CFWI region. Two main water-producing aquifers exist within the HAS:
the Upper Arcadia aquifer and Lower Arcadia aquifer. The ECFTX v1.0 treated the HAS as a
confining unit and did not simulate the individual aquifers within the HAS. As a result,
assignment of low hydraulic conductivity values to the areas where the HAS existed has
resulted in convergence issues in the model due to the presence of pumping wells in these
aquifers. Although the convergence issue has not affected the results significantly (see
Appendix A), it has considerably increased model run time. Therefore, as part of this update, the
horizonal hydraulic conductivity (Kh) for layer 2 was increased so that the model becomes more
conceptually accurate by simulating horizontal flow within the intermediate aquifer system and
consequently improving model convergence and run time. Vertical hydraulic conductivity values
were unchanged in layer 2 and overall vertical leakage from the surficial aquifer to the UFA
through layer 2 largely remained the same as ECFTX v.1.0. Appendix A presents details of this
update.
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CHAPTER 3 - MODEL RECALIBRATION

3.1 Calibration Approach

After the model was updated, model parameters were recalibrated to improve the model
performance within the focus area. No changes were made to the parameters outside the focus
area as part of recalibration. Because the focus area was identified as a local groundwater basin
with limited flow exchange across the lateral boundary, the modifications to the model parameters
within the focus area were assumed to minimally affect the groundwater levels and flows outside
the focus area. Model testing after recalibration generally confirmed this understanding.

As recommended by peer reviewers of ECFTX 1.0 (Andersen, et al. 2020), the automated
parameter estimation tool (PEST) by Dougherty (2014) was used for recalibration. The following
parameters were adjusted using PEST:

e Hydraulic conductivities of all layers
e Spring conductances
¢ River conductances along Wekiva River

Initial parameter values were obtained from the ECFTX v1.0 model. The upper and lower bounds
of the pilot points, utilized for adjustment of hydraulic conductivities, were set so that the UFA and
LFA transmissivities and ICU and MCU leakance values were maintained within the values
consistent with the known hydrogeology of the area. All observations utilized for PEST calibration
were located within the focus area. The following observations were employed for PEST
calibration:

Groundwater levels for all layers

Groundwater level differences between UFA and SA and between LFA and UFA
Spring flows

Baseflows within Wekiva River Basin

The model was recalibrated using a four-step approach as follows:

1. PEST optimization was first conducted on a steady-state model representing the average
2003-2014 condition.

2. Once a steady-state calibration was satisfactory, a transient model was run with the
updated parameters.

3. Storage coefficients were adjusted as needed.

4. Steps 1 through 3 were repeated until a satisfactory transient calibration was achieved.

The calibration criteria set for ECFTX v1.0 were used to evaluate model performance. The
recalibration was performed to ensure that the modeled groundwater levels and spring flows
matched observed ones closely within the focus area and the modeled baseflows were within the
range of estimated baseflows at critical gages in Wekiva River basin. The remaining simulated
baseflows within the focus area were reviewed qualitatively to ensure that the ECFTX v2.0
performed in a similar manner as ECFTX v1.0. Simulated groundwater level contours were
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compared with potentiometric surface maps to further assess the model’s ability to adequately
match the configuration of the UFA flow field and groundwater flow direction. Aquifer performance
test (APT) and literature data were utilized qualitatively to evaluate the reasonableness of the
aquifer parameters.

In addition to PEST calibration, the GHB conductances were manually adjusted along the eastern
boundary to ensure the fluxes across that boundary were similar to the ECFTX v1.0 fluxes. No
recharge adjustment was made. However, a recharge sensitivity analysis, described in detail later
in this report, was performed to better understand the effect of recharge on model
parameterization. Upon review and testing, storage coefficients were left unchanged from the
original ECFTX v1.0 values. After the recalibration was finalized, model-wide calibration statistics
were also reviewed to ensure there was no degradation in model performance outside the focus
area.

3.2 Transient Calibration Model Results

Monthly average aquifer water levels, springflow and baseflow estimates, developed for the
calibration of ECFTX V1.0, were utilized in this recalibration effort as calibration targets to assess
model calibration metrics. These included average monthly water levels from observation wells
from the SA (layer 1), UFA (layers 3-5), and the LFA (layers 9-11). Additional information
regarding the observation data utilized to calibrate the model can be found in Chapter 5 of the
ECFTX V1.0 documentation (CFWI HAT, 2020). In addition, vertical head differences (VHDSs)
between the SA and the UFA and between the UFA and the LFA were introduced as new
guantitative targets.

The ECFTX v1.0 calibration criteria were also used in this recalibration effort and included: 1) a
mean error for SA, UFA, and LFA aquifer heads from all wells of less than one foot, 2) a root
mean squared error of less than 5 feet from all wells within each aquifer, and a mean absolute
error within 5% of the total head elevation range for each aquifer. Total modeled spring flows had
to be within 10% of the estimated/measured flows. Mean simulated discharge at each magnitude
1 and 2 spring with observed records also individually had to be within 10% of the observed flows.
Specific to the CFWI area, 50% of the mean absolute simulated head residuals for all wells in the
SA, UFA, and LFA had to be within 2.5 feet of observed and 80% of the mean absolute simulated
head residuals for all wells in the SA, UFA, and LFA were required to be within 5 feet of observed
values (CFWI HAT, 2020).

Model statistics for observation wells are presented in this section for three geographic areas: 1)
ECFTX model domain, 2) CFWI area and 3) focus area, shown in Figures 1.1 and 1.4. For
assessing improvement in model prediction performance, model statistics for all calibration target
groups were compared to ECFTX v1.0.

3.2.1 Groundwater levels

Transient model calibration statistics were computed for the target wells in the SA, UFA and LFA
within the focus area (Table 3.1), CFWI area (Table 3.2) and ECFTX model domain (Table 3.3).
The spatial distributions of mean error, expressed as the simulated minus observed water level,
for the target wells for the SA, UFA, and LFA in the focus area are shown in Figures 3.1 through
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3.3. The calibration period mean simulated versus observed water levels for the SA, UFA, and
LFA targets in the focus area are compared between version 1.0 and 2.0 of the models in Figures
3.4 through 3.6. Figures 3.8 through 3.13 show individual simulated versus observed water level
hydrographs at selected wells within the focus area (Figure 3.7). Figure 3.14 shows the location
of 50 vertical head difference targets located in the focus area that were used to calibrate the
model. The calibration period mean simulated versus observed vertical head differences in the
recalibration focus area are compared between version 1.0 and 2.0 of the models in Figure 3.15.
The 2003 to 2014 average flooded depth in layer 1 is compared in Figure 3.16. Appendix B
includes graphs of simulated versus observed water levels for the calibration period at each target
well grouped by major aquifer within the focus area.

Table 3.1. Transient model calibration period statistics of the target monitoring wells in the focus
area.

Focus Area—-V1.0 Focus Area — V2.0
SA UFA LFA SA UFA LFA
Residual Mean -0.72 0.42 1.96 -0.10 -0.25 -0.02
Error Standard Dev 5.04 4.44 1.51 2.19 1.85 0.42
5% Observation Range 6.86 5.73 2.5 6.86 5.73 2.50
Absolute Residual Mean 3.68 3.39 2.11 1.90 1.60 0.82
Error sum of squares 1789 1670 65 331 293 2
RMS Error 5.05 4.43 2.43 2.17 1.86 0.4
Minimum Residual -13.12 -9.63 -0.12 -7.71 -8.00 -1.1
Maximum Residual 18.47 22.07 4.54 9.37 5.11 0.47
# Observations 70 85 11 70 85 11
% MAE < 2.5 ft 57% 48% 64% 87% 89% 100%
% MAE < 5.0 ft 74% 82% 100% 94% 96% 100%
R2>0.4 81% 94% 100% 84% 94% 100%

All values in feet except as noted. Calibration period is 2004 to 2012. Mean error is expressed as simulated minus observed.
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Table 3.2. Transient model calibration period statistics of the target monitoring wells in the CFWI

area.
CFWI Area-V1.0 CFWI Area-V2.0

SA UFA LFA SA UFA LFA
Residual Mean -0.64 0.34 1.23 -0.42 -0.06 -0.16
Error Standard Dev 3.47 3.75 2.68 2.86 3.18 2.46
5% Observation Range 8.6 6.2 2.62 8.60 6.20 2.62
Absolute Residual Mean 2.61 3.24 2.48 2.23 2.64 1.80
Error sum of squares 3442 2729 202 2299 1956 140
RMS Error 3.53 3.75 2.9 2.88 3.18 2.42
Minimum Residual -16.51 | -11.93 -5.46 -16.52 | -11.98 -7.16
Maximum Residual 13.29 10.11 5.73 13.28 10.03 4.82

# Observations 277 194 24 277 194 24
% MAE < 2.5 ft 71% 52% 58% 7% 67% 83%
% MAE < 5.0 ft 87% 85% 88% 92% 89% 92%
R2>0.4 78% 96% 92% 79% 96% 92%

All values in feet except as noted. Calibration period is 2004 to 2012. Mean error is expressed as simulated minus observed.

Table 3.3. Transient model calibration period statistics of the target monitoring wells in the

ECFTX model domain.

ECFTX Model Domain — V1.0 ECFTX Model Domain — V2.0

SA UFA LFA SA UFA LFA

Residual Mean -0.46 0.46 0.46 -0.43 0.39 -0.65
Error Standard Dev 4.24 4.7 3.33 4.09 4.58 2.96
5% Observation Range 8.97 7.59 2.79 8.97 7.59 2.79
Absolute Residual Mean 2.83 3.78 2.65 2.72 3.62 2.11
Error sum of squares 18156 | 20666 329 16878 | 19599 266
RMS Error 4.27 4.72 3.31 411 4.60 2.98

Minimum Residual -31.65 -22.1 -10.19 -31.69 | -22.10 -10.15
Maximum Residual 21.15 19.14 5.73 21.15 19.14 4.82
# Observations 997 928 30 997 928 30

% MAE < 2.5 ft 68% 48% 60% 70% 53% 80%

% MAE < 5.0 ft 88% 76% 87% 89% 77% 90%
R2>0.4 78% 93% 93% 78% 93% 93%

All values in feet except as noted. Calibration period is 2004 to 2012. Mean error is expressed as simulated minus observed.

3.2.2 Spring flow

Simulation period model statistics for 17 magnitude 1 and 2 springs are included in Table 3.4.
The observed and simulated flux in Table 3.4 is computed as the average for the 2003 to 2014
simulation period. The spatial distribution of the mean error for the 17 simulated springs is shown
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in Figure 3.17 and a regression plot of simulated versus observed mean spring flow is shown in
Figure 3.18. Simulated versus observed monthly flow hydrographs for Wekiwa and Rock springs
are shown in Figure 3.19. For the calibration period from 2004 to 2012, mean simulated springflow
in the model from all 158 springs was 2,104 cfs, while observed (estimated and measured) was
2,159 cfs, resulting in a mean error of 2.5%. Appendix C contains graphs of simulated versus
observed springflow where it was continuously measured.

Table 3.4. Model simulation period statistics of the magnitude 1 and 2 target springs simulated
in the ECFTX model.

ECFTX V1.0 ECFTX V2.0
Spring Name Observed - :
pring Flux (cfs) Simulated % error Simulated O i
flux (cfs) flux (cfs)
Lithia Spring Major 34.7 33.2 -4.4% 33.1 -4.5%
Buckhorn Main Spring 12.2 12.1 -0.9% 12.1 -1.0%
Sulphur Spring 34.7 35.4 2.0% 35.4 2.0%
Crystal Main Spring 45.5 46.4 2.0% 46.3 1.9%
Weeki Wachee Spring 160.4 167.3 4.4% 167.3 4.4%
Chassahowitzka Spring 59.6 59.3 -0.6% 59.3 -0.6%
Homosassa Spring 83.5 84.5 1.1% 84.5 1.2%
Gum Spring 63.8 64.8 1.5% 64.8 1.5%
Rainbow Spring* 71.3* 73.3 2.0% 73.3 2.0%
Apopka Spring 24.9 24.8 -0.1% 24.9 0.0%
Sanlando Springs 18.8 19.9 5.4% 18.9 0.1%
Starbuck Spring 12.1 12.6 3.9% 12.0 -0.5%
Wekiwa Spring 61.0 64.6 5.8% 61.3 0.4%
Bugg Spring 10.6 9.7 -8.2% 10.0 -5.2%
Rock Springs 54.9 51.6 -6.1% 54.7 -0.5%
Volusia Blue Spring 143.6 132.4 -7.9% 144.3 0.5%
Alexander Spring 100.1 98.9 -1.2% 99.8 -0.3%

*Observed flow reduced by 88% since only 12% of rainbow springshed included in active domain.

3.2.3 Baseflow

Calibration criterion for simulated baseflows was within an order of magnitude due to the variability
of estimation methods for this more uncertain flow statistic. Information about the baseflow
estimation methods used for the ECFTX model can be found in Chapter 4 of the ECFTX V1.0
report (CFWI HAT, 2020). A total of 18 USGS gages where baseflows were estimated are
included in Table 3.5, alongside the minimum and maximum estimated baseflows. Gauge
02238000, Haynes Creek at Lisbon, was removed from the list because its flows have been
regulated with multiple control structures. Wekiva River at Sanford gauge 02235000 was added
to the list because it was one of the gauges used to set minimum flows and levels at Wekiva
River. For the calibration period, from 2004 to 2012, mean simulated baseflow in the model from
all 18 USGS gauges was 5,557 cfs, while the range of estimated flows varied between 2,391 and
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9,998 cfs. A total of 15 out of 18 USGS gauges were within the range of estimated baseflows by
baseflow separation methods (Figure 3.20).

Table 3.5. Simulated mean baseflow from 2004 to 2012 compared to estimated ranges using
the USF method and USGS Groundwater Toolbox methods at 18 stations.

: . Simulated (cfs)

Gage Station Min (cfs) Max (cfs) V1o V2.0
02232400 St. Johns River nr Cocoa FL 221 928 293 293
02232500 St. Johns River nr Christmas FL 282 1085 384 383

St. Johns River above Lake Harne

02234000 Ar Geneva FL y 441 1473 856 860
02236000 St. Johns River Near DeLand FL 389 3186 1768 1946
02235000 Wekiva River nr Sanford 184 254 278 247
02294650 Peace River at Bartow 21 125 77 78
02294898 Peace River at Fort Meade 19 144 129 129
02295637 Peace River at Zolfo Springs 80 350 331 334
02296750 Peace River at Arcadia 118 596 533 537
02298830 Myakka River nr Sarasota 14 150 50 50
02300500 Little Manatee River nr Wimauma 23 88 70 70
02301500 Alafia River at Lithia 53 189 110 111
02303000 Hillsborough River nr Zephyrhills 65 145 102 102
02310000 Anclote River nr Elfers 4 38 11 11
02312000 Withlacoochee River at Trilby 28 153 165 164
02312500 Withlacoochee River at Croom 56 211 190 195
02312762 Withlacoochee River nr Inverness 156 378 36 46
02313000 Withlacoochee River nr Holder 237 505 -8 1

3.2.4 Water budget

The simulated water budget including boundary condition inflows (Table 3.6) and outflows (Table
3.7) from the ECFTX v2.0 model by layer were prepared for the calibration period. The total flux
(IN-OUT) balances to within less than 0.05 inches/year. Net fluxes for each major component of
the water budget during the calibration period included recharge of 8.7 in/yr, GHB lateral flux of
0.9 in/yr into the model with constant head, well, river, springs, and drains having net outflow
components of 2.3, 2.0, 0.8, 1.3, and 3.5 inches per year, respectively. A total net storage change
of +0.4 in/yr occurred over the 2004—2012 period based on the model results. Net fluxes for each
major component in ECFTX v1.0 included recharge of 8.7 infyr, GHB lateral flux of 0.7 in/yr into
the model with constant head, well, river, springs, and drains having net outflow components of
2.3, 2.0, 0.9, 1.3, and 3.4 inches per year, respectively. A total net storage change of +0.4 in/yr
occurred over the 2004—-2012 period based on the model results, which is unchanged from v2.0.

Table 3.3.6. Annual average boundary condition influx in the ECFTX transient model during the
calibration period (2004-2012). Note units are in inches per yeatr.

Layer Constant GHB | Well | River | Recharge | ET | Spring Drain Drain | Storage
Head in/yr infyr | infyr | infyr infyr infyr | infyr return infyr infyr
infyr
1 0.22 0.04 | 0.08 | 3.23 21.83 - - - - 0.38
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Head in/yr infyr | infyr | infyr infyr infyr | infyr return infyr
infyr

Layer Constant GHB | Well | River | Recharge | ET | Spring Drain Drain | Storage

- 026 | - - - - - - -

- 048 | - - - - - 0.07 -

- 023 | - - - - - - -

057 | - - - - - - -

- 010 | - - - - - - -

- 0.08 | - - - - - - -

- 0.06 | - - - - - - -

OO [N DIW[N
1

- 021 | - - - - - - -

=
o
1

11 - 016 | - - - - - - -

Total 0.22 2.19 | 0.08 | 3.23 21.83 0.00 - 0.07 -

Table 3.3.7. Annual average boundary condition outflux in the ECFTX transient model during
the calibration period (2004-2012). Note: units are in inches per year.

Layer Constant GHB Well | River | Recharge ET Spring Drain Drain | Storage
Head in/yr infyr infyr | infyr infyr infyr infyr return infyr
in/yr
1 -2.56 -0.02 | -0.17 | -4.03 - -13.13 - - -3.61
2 - -0.03 -0.02 - - - - - -
3 - -0.45 -0.64 - - - -1.29 - -
4 - -0.11 -0.30 - - - - - -
5 - -0.06 -0.59 - - - -0.01 - -
6 - - - - - - - - -
7 - - - - - - - - -
8 - - - - - - - - -
9 - -0.12 -0.31 - - - - - -
10 - - - - - - - - -
11 - -0.51 - - - - - - -
Total -2.56 -1.30 | -2.03 | -4.03 - -13.13 | -1.30 - -3.61

3.2.5 Aquifer and Confining Unit Properties

Hydraulic properties within the ECFTX model include hydraulic conductivity (both vertical and
horizontal) and specific storage properties. During the calibration process, the initial estimates of
hydraulic conductivity were adjusted within reasonable limits to improve the agreement between
simulated and observed conditions while maintaining parameterization consistent with the
conceptual model of the system. After testing different values of storage properties, the V1.0
model assigned values were left unchanged. The horizontal hydraulic conductivity distribution in
model layer 1 is shown in Figure 3.21 and hydraulic conductivity maps for all model layers are
included in Appendix D. Transmissivity, the product of the aquifer K and the saturated thickness
expressed in feet squared per day (ft?/d), was computed for the UFA (layer 3 through 5) and the
LFA (layer 9 through 11). UFA transmissivity is compared with APT results (Figure 3.22) and the
September 2010 UFA potentiometric surface map (Figure 3.23). The potentiometric surface maps
provide evidence of higher or lower transmissivity based on whether the gradient is flat or steep
and was used as a qualitative guide to calibration. LFA transmissivity is compared with APT
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results in Figure 3.24. The leakance coefficient, computed as the vertical hydraulic conductivity
divided by the confining unit thickness and expressed in units of ft/d/ft (d') was computed for
layers 2, 6, 8 and layer 10 (Appendix D).

3.3 Recharge Sensitivity Analysis

Recharge was not adjusted during the recalibration of the model because it was originally
estimated using a water-balance model and generally seemed to work well for ECFTX v1.0. The
results presented above show that the model was able to be successfully recalibrated by adjusting
aquifer parameters without modifying the recharge in the model. However, recharge, being a large
water budget component, is one of the largest sources of uncertainty in the model due to lack of
measured data. Therefore, a full PEST recalibration was also performed with a recharge rate
reduction of 20% within the focus area to test the sensitivity of the model performance to recharge.

3.3.2 Methods

As described in Chapter 3.1 Calibration Approach, an initial steady-state model was developed
for automated calibration representing the average (2003 to 2014) ECFTX V1.0 model. Within the
initial model, recharge rates were not adjusted from ECFTX v1.0, apart from not assigning a value
(O feet per day) to grid cells representing the Wekiva River (Figure 2.4). As a sensitivity test,
another model was developed in which the initial model recharge rates were reduced by 20%
within the focus area. Except for recharge rates, both models were identical and were assigned
the same initial parameter values and bounds in PEST. For each model, PEST was independently
run. The same calibration approach described in section 3.1 was implemented.

3.3.3 Groundwater levels

Transient model calibration statistics were computed for the target monitoring wells in the SA,
UFA, and LFA within the focus area (Table 3.8). The spatial distribution of mean error, expressed
as the simulated minus observed water level, and observed versus simulated water levels for the
target wells in the SA, UFA, and LFA in the recalibration focus area are compared in Appendix E.
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Table 3.8. Transient model calibration period statistics of the target monitoring wells in the
recalibration focus area with and without the recharge rate adjustment.

Focus Area Focus Area
No recharge adjustment Recharge reduced by 20%
SA UFA LFA SA UFA LFA
Residual Mean -0.10 -0.25 -0.02 -0.41 -0.3 -0.18
Error Standard Dev 2.19 1.85 0.42 2.36 1.82 1.01
5% Observation Range 6.86 5.73 2.50 6.86 5.73 2.5
Absolute Residual Mean 1.90 1.60 0.82 1.93 1.52 0.91
Error sum of squares 331 293 2 398 287 11
RMS Error 2.17 1.86 0.4 2.38 1.84 0.98
Minimum Residual -7.71 -8.00 -1.1 -9.7 -7.37 -2.92
Maximum Residual 9.37 5.11 0.47 8.21 4.67 1.03
# Observations 70 85 11 70 85 11
% MAE < 2.5 ft 87% 89% 100% 83% 88% 91%
% MAE < 5.0 ft 94% 96% 100% 94% 98% 100%
R2>0.4 84% 94% 100% 87% 96% 100%

All values in feet except as noted. Calibration period is 2004 to 2012. Mean error is expressed as simulated minus observed.

3.3.4 Spring flow

Simulation period model statistics for 17 magnitude 1 and 2 springs are included in Table 3.9.
The observed and simulated flux in Table 3.9 is computed as the average for the 2003 to 2014
simulation period. A regression plot of simulated versus observed mean spring flow for the
magnitude 1 and 2 springs is included in Appendix E.

Table 3.9. Transient model calibration statistics of the magnitude 1 and 2 target springs
simulated in the ECFTX model.

Focus Area Focus Area
No recharge Recharge reduced b
Spring Name gltlJJsXe(r(\:/fic)i adjustmegt ° 20% ’
Simulated % error Simulated % error
flux (cfs) flux (cfs)
Lithia Spring Major 34.7 33.1 -4.5% 33.2 -4.4%
Buckhorn Main Spring 12.2 12.1 -1.0% 12.1 -1.0%
Sulphur Spring 33.7 35.4 2.0% 35.4 2.0%
Crystal Main Spring 455 46.3 1.9% 46.3 1.9%
Weeki Wachee Spring 160.4 167.3 4.4% 167.3 4.4%
Chassahowitzka Main
Spring 5.6 5.3 0.6% 59.3 -0.6%
Homosassa No. 1 Spring 83.5 84.5 1.2% 84.5 1.2%
Gum Spring Group 63.8 64.8 1.5% 64.8 1.5%
Rainbow Spring* 71.3* 73.3 2.0% 73.3 2.0%
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Focus Area Focus Area
No recharge Recharge reduced b
Spring Name (Igl?ﬁ(e{c\;/fes(; adjustmegt ° 20% ’
Simulated % error Simulated % error
flux (cfs) flux (cfs)
Apopka Spring 24.9 24.9 0.0% 24.7 -0.8%
Sanlando Springs 18.8 18.9 0.1% 18.5 -1.7%
Starbuck Spring 12.1 12.0 -0.5% 11.9 -1.9%
Wekiwa Spring 61.0 61.3 0.4% 61.1 0.1%
Bugg Spring 10.6 10.0 -5.2% 9.9 -7.0%
Rock Springs 54.9 54.7 -0.5% 53.1 -3.4%
Volusia Blue Spring 143.6 144.3 0.5% 144.4 0.6%
Alexander Spring 100.1 99.8 -0.3% 99.8 -0.3%

*Observed flow reduced by 88% since only 12% of springshed area represented in active domain

3.3.5 Baseflow
A total of 18 USGS gauges where baseflow was estimated are included in Table 3.10, alongside
the minimum and maximum estimated baseflow. For both runs, with and without the recharge
adjustment, a total of 15 out of 18 USGS gauges where baseflow was estimated were within the
range of flows estimated baseflow.

Table 3.10. Simulated mean baseflow from 2004 to 2012 compared to estimated ranges using
the USF method and USGS Groundwater Toolbox methods at 18 stations.

Simulated (cfs)
Gage Station Min (cfs) | Max (cfs) | No recharge RECIEE
adjustment renlEat
by 20%
02232400 St. Johns River nr Cocoa FL 221 928 293 293
02232500 | St. Johns River nr Christmas FL 282 1085 383 383
02234000 St. Johns River above Lake 441 1473 860 784
Harney nr Geneva FL

02236000 | St. Johns River Near DeLand FL 389 3186 1946 1730
02235000 Wekiva River nr Sanford 184 254 247 223
02294650 Peace River at Bartow 21 125 78 77

02294898 Peace River at Fort Meade 19 144 129 129
02295637 Peace River at Zolfo Springs 80 350 334 331
02296750 Peace River at Arcadia 118 596 537 532
02298830 Myakka River nr Sarasota 14 150 50 50

02300500 | Little Manatee River nr Wimauma 23 88 70 70

02301500 Alafia River at Lithia 53 189 111 110
02303000 | Hillsborough River nr Zephyrhills 65 145 102 102
02310000 Anclote River nr Elfers 4 38 11 11

02312000 Withlacoochee River at Trilby 28 153 164 164
02312500 Withlacoochee River at Croom 56 211 195 194
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Simulated (cfs)
Gage Station Min (cfs) | Max (cfs) | No recharge REEIEEE
adjustment iRt
by 20%
02312762 | Withlacoochee River nr Inverness 156 378 46 42
02313000 Withlacoochee River nr Holder 237 505 1 -2

3.3.6 Aquifer and Confining Unit Properties
Horizontal hydraulic conductivity maps for all layers, leakance coefficient maps for layers 2, 6, 8,
and 10, and UFA and LFA transmissivity maps for the recharge sensitivity simulations are
included in Appendix E.
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Figure 3.4. Mean simulated versus observed water levels for the SA within the focus area in the
ECFTX transient model for V1.0 (left) and V2.0 (right). (Note: Solid line is 1:1 relation between
simulated and observed water levels; dashed line is linear regression of simulated versus
observed water levels from target wells)
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Figure 3.5. Mean simulated versus observed water levels for the UFA within the focus area in
the ECFTX transient model for V1.0 (left) and V2.0 (right). (Note: Solid line is 1:1 relation
between simulated and observed water levels; dashed line is linear regression of simulated
versus observed water levels from target wells)
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Figure 3.8. Simulated versus observed water levels for the SA monitor well OR0107 at Plymouth
Tower.
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Figure 3.9. Simulated versus observed water levels for the UFA well OR0548 at Wekiwa Springs

State Park.
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Figure 3.10. Simulated versus observed water levels for the UFA well S-1224 at Geneva Fire

Station.
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Figure 3.11. Simulated versus observed water levels for the UFA well OR-47 at Orlo Vista, FL.
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Figure 3.12. Simulated versus observed water levels for the LFA well OF0794 at Plymouth Tower.

39



LFA: SIRWMD09991670
ME=0.187 MAE=0.487 nMAE=0.49 R2=0.903 NS=0.897

52

48

® Observed

= Simulated

S
i

Water Level (feet, NAVD88)
L]

40

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 3.13. Simulated versus observed water levels for the LFA well S-1329 at Winter Springs
at Casselberry.
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ECFTX V1.0: 1st and 2nd Magnitude Springs
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Figure 3.18. Mean simulated versus observed flow for magnitude 1 and 2 springs within the
ECFTX model domain. Note: solid line is 1:1 relation between simulated and observed flow;
dashed line is linear regression of simulated versus observed flow from 17 springs.
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Figure 3.19. Simulated versus observed flows at Wekiwa (top) and Rock springs (bottom) within
the ECFTX model.
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CHAPTER 4 - DISCUSSION

The recalibration of the ECFTX model significantly improved the model performance in the focus
area. Average RMS error in the focus area reduced from about 5.1 to 2.2 feet in the SA, from 4.4
feet to 1.9 feet in the UFA and from 2.4 to 0.4 feet in the LFA. In addition, the coefficient of
determination (R-squared) values greater than 0.4 were generated by regressing all simulated
versus observed water levels in ECFTX v2.0 and compared with those in ECFTX v1.0. These R-
squared values were considered a measure of how well the model performed matching shorter-
term transient response to dynamic stresses (CFWI HAT, 2020). Compared to ECFTX v1.0,
ECFTX v2.0 had higher percentage of R-squared values greater than 0.4 for SA and the same
for the UFA and LFA in the focus area. Although overall calibration has been improved
significantly, water levels of a few target wells in CFWI were not matched as well as they were in
ECFTX v1.0 but the difference was small (increase in MAE < 0.5 ft in the SA and <1.5 ft in the
UFA). The maximum increase in MAE (approximately 1.3 ft) was noticed at a monitoring well in
northeast Seminole County (SJRWMD ID: 30342858). It appears that the adjustment made to
improve several wells near Wekiva River having very high MAEs in ECFTX v1.0 (Figure 3.2)
degraded one well slightly.

The simulations of major springs were also improved as the average model error decreased from
about 6% to less than 1% in Wekiwa and Rock springs. Moreover, VHDs between UFA and SA
and between UFA and LFA were introduced as calibration targets which were not utilized
quantitively in the ECFTX v1.0 calibration. The VHDs are one of the primary indicators of the
degree of confinement between two aquifers and helped us improve the model’s ability to simulate
degree of confinement in the region. This is important for accurately predicting the propagation of
impacts of groundwater pumping in the UFA and LFA to lakes, rivers, and wetlands. While the
calibration improved in the focus area, no significant changes occurred outside it as a result. The
improvement in model-wide calibration performance reflects the improvement in focus area
calibration performance.

We assessed the reasonableness of the updated simulated hydraulic conductivities by reviewing
the transmissivity values of UFA and LFA with APT/literature data, spring locations (karst-
dominated geology) and potentiometric surface contour gradients. The leakance values of the
ICU and MCU were better represented based on VHDs and literature information.

Figure 4.1 shows the updated UFA transmissivity values with September 2010 potentiometric
surface contours, the available APTs, and spring locations. Figure 4.2 shows the updated LFA
transmissivity values with the available APTs, and spring locations. Small and large spacings
between two contours of potentiometric surface are usually indications of low or high aquifer
transmissivities respectively. As shown in Figure 4.1, the recalibrated parameter distribution is
generally consistent with the contour spacing as high transmissivity areas usually coincide with
the contours with large spacing (flat gradients) whereas low transmissivity areas usually coincide
with contours with tight spacing (steep gradients). In addition, very high transmissivity values were
assigned to the areas of springs and their vicinities, which is consistent with the fact that aquifers
are expected to be highly transmissive in the vicinity of springs due to presence of conduits and
large fractures. Although the recalibrated transmissivity values are similar to the APT-derived
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values in most of the focus area, the transmissivity values in the model are much higher than the
APT-derived values in northern Orange County; however, the horizontal hydraulic conductivity
values shown in Figures 60 and 61 of the USGS-ECFT model report, corresponding to layers 3
and 5 of the model, seem to be similar to the calibrated hydraulic conductivities in those areas
(Sepulveda et al, 2012). Hydraulic conductivity maps of each layer in the model are included in
Appendix D. It should also be noted that APT values should be cautiously used for comparing
with model parameters. APT values are usually derived from field tests using analytical solutions
with limitations. The quality of the field tests and collected data would significantly affect the
transmissivity values derived from the APTs. In addition, the APTs (mostly lasting less than 72
hours) usually do not sufficiently stress the aquifer more than a few miles so the derived
transmissivity values may not represent large areas. Moreover, some of the APTs are based on
only one pumping well (with ho monitoring well nearby) and can produce highly questionable
transmissivity estimates due to pumping well frictional effect mixing with aquifer water level
change due to pumping.
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Figure 4.1. UFA Transmissivities with potentiometric surface, spring locations, and APTs.
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Figure 4.2. LFA Transmissivities with APTSs.

Figure 4.3 shows the recalibrated leakance values in the UFA with VHDs between the SA and
UFA. As expected, low leakance values are in the areas of large VHDs and high leakance values
are in the areas of small VHDs, indicating the reasonableness of the leakance values in the ICU.
Similarly Figure 4.4 shows consistency between the VHDs and leakance values in MCU 1.
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Figure 4.3. ICU Leakances with SA/UFA VHDs.
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Figure 4.4. MCU_| Leakance distribution with UFA/LFA VHDs.

During the recalibration effort, the recharge used in ECFTX v1.0 was retained. However, because
of uncertainties in recharge estimation, a recharge sensitivity calibration simulation was
conducted to better understand the effect of recharge on model calibration. A full recalibration
was performed using PEST by reducing the recharge by 20%. The purpose was to see if a good
calibration (i.e., calibration statistics were similar to the ECFTX v2.0 calibration) could be achieved
when the recharge was 20% less and what the parameter distribution would be, compared to the
updated parameters. The results indicated that the calibration statistics of ECFTX v2.0 were
similar to or better than those of the recalibrated model with 20% recharge adjustment, although
a reasonably good calibration was achieved under a reduced recharge condition. However,
parameter distribution of the sensitivity run would still be like ECFTX v2.0, providing us more
confidence that the final parameters in ECFTX v2.0 were reasonable.

GHB fluxes along the eastern seawater/freshwater interface boundary were a significant concern
during calibration of ECFTXv1.0. Large influxes from this boundary would result in an artificial
source of freshwater that would tend to artificially mitigate drawdown impacts from wellfield
withdrawals. Care was taken during recalibration to adjust GHB conductance to ensure that GHB
fluxes in ECFTX v2.0 were similar to those of ECFTXv1.0
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CHAPTER 5 - CONCLUSIONS

The ECFTX v2.0 model performance was considerably improved within the focus area including
the Wekiva River springs groundwater contributing basin and Seminole County. Aquifer
parameters were adjusted within a range consistent with the known hydrogeology in the region.
Accordingly, the model-wide calibration performance was also improved as a result of the
improvement in the focus area. Overall, this provides greater confidence that ECFTX v2.0 should
be considered an appropriate tool for assisting regulatory decisions, minimum flows and minimum
levels (MFL) evaluations, and future planning efforts.
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Appendix A — East-Central Florida Transient Expanded (ECFTX) Model
Horizontal Hydraulic Conductivity Modifications in Layer 2

TECHNICAL MEMORANDUM
TO: Central Florida Water Initiative (CFWI) Hydrologic Assessment Team (HAT)

FROM: Hua Zang, P.G., Ph.D., Environmental Flows and Levels Section
Jason G. Patterson, P.G., Environmental Flows and Levels Section

DATE: November 10, 2021

SUBJECT: East-Central Florida Transient Expanded (ECFTX) Model Horizontal Hydraulic
Conductivity Modifications in Layer 2

The East Central Florida Transient Expanded (ECFTX) groundwater flow model and the
subsequent model documentation report were completed by the Central Florida Water Initiative
(CFWI) Hydrologic Assessment Team (HAT) in February 2020. During recent discussions, the
Districts’ members of HAT determined that it was necessary to modify the horizonal hydraulic
conductivity (Kh) for layer 2, which represents the intermediate confining unit (ICU) within the
ECFTX model. By increasing the layer 2 Kh, the model becomes more conceptually accurate by
simulating horizontal flow within the Hawthorn aquifer system (HAS) (also more generally referred
to as the intermediate aquifer system) and consequently improving model convergence and run
time.

The HAS generally occurs as individual, thin, low permeability water bearing units within the
intermediate confining unit, between the surficial aquifer (above) and the Upper Floridan aquifer
system (below). The HAS exists within an approximate 5,000 square-mile area of DeSoto,
Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and in the southwest
portion of Polk County within the CFW!I region. There are two main water producing aquifers within
the HAS, the Upper Arcadia aquifer and Lower Arcadia aquifer. The lateral continuity and water-
bearing potential of the zones within the HAS are highly variable due to a mixture of shell, sand,
gravel, dolomite, and thin limestone beds that are interbedded within a clay matrix. This
heterogeneous sequence often leads to low permeability of the water bearing zones and
complicates mapping the lateral extent of each zone (Basso and Hood, 2005).

Combined groundwater withdrawals from both aquifers were approximately 58 million gallons per
day (mgd) in 2006 with roughly 3 mgd occurring within the CFWI region. In 2018, there were
groundwater withdrawals of 48 mgd from both aquifers with only about 3.2 mgd occurring within
the CFWI region. Due to the unknown extent, water bearing limitations, limited water use, and
minimal projected future demands for the HAS within the CFW!I region, the HAT determined not
to simulate individual aquifers within the HAS as part of the ECFTX model.

Initial Kh values for the intermediate confining unit (layer 2) were derived from vertical hydraulic
conductivity (Kv) values calculated from aquifer performance tests (Figure 1). An anisotropy ratio
was applied from the Kv value to the Kh (Kh:Kv) of 10:1. After further review, the HAT decided to
pursue a more conceptually accurate Kh value to allow horizontal flow through the HAS while
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maintaining the vertical head differences and fluxes between the surficial aquifer and Upper
Floridan aquifer. The revised values of the horizontal hydraulic conductivity were modified from
the District Wide Regulatory Model (DWRM3) model developed by Southwest Florida Water
Management District (Environmental Simulations, Inc., 2014). The DWRM3 model simulates both
aquifers and the confining units above and below the aquifers. Figure 2 shows the modified layer
2 hydraulic conductivity values.

The ECFTX model was re-run with the same transient calibration configuration except for the
changes to layer 2 Kh. This modification resulted in very minor changes to the simulated heads
of the overlying surficial aquifer and underlying Upper Floridan aquifer. Figures 3 and 4 show
simulated head change with the increased layer Kh values in the surficial aquifer and Upper
Floridan aquifer, respectively. The change of Layer 2 Kh did not cause significant change to the
model calibration statistics of the target monitoring wells as given in Tables 1 and 2. There was a
very minor change of -0.1% to simulated spring flow of Lithia Spring and essentially no change
on other target springs (Table 3). The summary water budgets in Table 4 and 5 demonstrate that
the HAS Kh modification did not cause significant changes to mass balance. A detailed
breakdown of general head boundary (GHB) fluxes in Table 6 show that the boundary fluxes were
essentially the same except very minor change to the layer 2 (HAS) of southern boundary.
Additionally, the modified Layer 2 Kh values improved numerical convergence encountered in
layer 2 and shortened model run times.
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Table 1. Transient model calibration statistics of the target monitoring wells in the ECFTX Model

domain comparing February 2020 calibration versus that with HAS Kh change.

February 2020 calibration

HAS Kh change calibration

SA UFA LFA SA UFA LFA
Residual Mean -0.46 0.46 0.46 -0.47 0.45 0.46
Error Standard Dev 4.24 4.7 3.33 4.26 4.69 3.33
5% of Observation Range 8.97 7.59 2.79 8.97 7.59 2.79
Absolute Residual Mean 2.83 3.78 2.65 2.84 3.78 2.65
Error Sum of Squares 18156 20666 329 18333 20620 329
RMS Error 4.27 4.72 3.31 4.29 4.71 3.31
Minimum Residual -31.65 -22.1 -10.19 -31.69 -22.1 -10.19
Maximum Residual 21.15 19.14 5.73 21.15 19.14 5.73
Number of Observations 997 928 30 997 928 30
Percentage with MAE < 2.5 ft 68% 48% 60% 68% 48% 60%
Percentage with MAE < 5.0 ft 88% 76% 87% 88% 76% 87%
Percentage with R2 > 0.4 78% 93% 93% 78% 93% 93%

All values in feet except as noted. Calibration period is 2004-2012. Mean error expressed as simulated minus observed

Table 2. Transient model calibration statistics of the target monitoring wells in the CFWI Area

comparing February 2020 calibration versus HAS Kh change calibration.

February 2020 calibration

HAS Kh change calibration

SA UFA LFA SA UFA LFA
Residual Mean -0.64 0.34 1.23 -0.65 0.32 1.23
Error Standard Dev 3.47 3.75 2.68 3.48 3.74 2.68
5% of Observation Range 8.6 6.2 2.62 8.6 6.2 2.62
Absolute Residual Mean 2.61 3.24 2.48 2.62 3.24 2.49
Error Sum of Squares 3442 2729 202 3465 2714 202
RMS Error 3.53 3.75 2.9 3.54 3.74 2.9
Minimum Residual -16.51 -11.93 -5.46 -16.51 -11.93 -5.49
Maximum Residual 13.29 10.11 5.73 13.28 10.08 5.73
Number of Observations 277 194 24 277 194 24
Percentage with MAE < 2.5 ft 71% 52% 58% 71% 52% 58%
Percentage with MAE < 5.0 ft 87% 85% 88% 87% 85% 88%
Percentage with R2 > 0.4 78% 96% 92% 78% 96% 92%

All values in feet except as noted. Calibration period is 2004-2012. Mean error expressed as simulated minus observed
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Table 3. Transient model calibration statistics of the target springs simulated in the ECFTX model.

Spring Name Ot era) [ riginal | wodified
Lithia Spring Major 34.7 33.2 33.1
Buckhorn Main Spring 12.2 12.1 12.1
Sulphur Spring (Hillsborough) 34.7 35.4 35.4
Crystal Main Spring (Pasco) 45.5 46.4 46.4
Weeki Wachee Spring 160.4 167.3 167.3
Chassahowitzka Spring Main 59.6 59.3 59.3
Homosassa Spring #1 83.5 84.5 84.5
Gum Spring Main 63.8 64.8 64.8
Rainbow Spring #1 71.8 73.3 73.3
Apopka Spring 24.9 24.8 24.8
Sanlando Springs 18.8 19.9 19.9
Starbuck Spring 12.1 12.6 12.6
Wekiwa Spring (Orange) 61.0 64.6 64.6
Bugg Spring (Lake) 10.6 9.7 9.7
Rock Springs (Orange) 54.9 51.6 51.6
Volusia Blue Spring 143.6 132.4 132.4
Alexander Spring 100.1 98.9 98.9
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Table 4. Annual average boundary condition influx (in/yr) in the ECFTX transient model (2003-2014)

Layer
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Table 5. Annual average boundary condition outflux (in/yr) in ECFTX transient model (2003-2014)

Layer Constant | GHB Well River Rech ET Spring Drain Drain Storage
Head Return
Infyr
February 2020 calibration (calibQ)
1 -2.6 -0.022 -0.17 -3.9 - -13.1 - - -3.5 -
2 - -0.028 | -0.021 - - - - - - -
3 - -0.46 -0.62 - - - -1.3 - - -
4 - -0.11 -0.30 - - - - - - -
5 - -0.064 -0.58 - - - -7E-3 - - -
6 - -6E-5 -2E-4 - - - - - - -
7 - -8E-4 -1E-4 - 3 - - - - -
8 - -5E-5 -9E-4 - 3 - - - - -
9 - -0.18 -0.30 - 3 - - - - -
10 - - - - - - - - - -
11 - -0.57 - - 3 - - - - -
HAS Kh change calibration (calibHAS)
1 -2.6 -0.022 -0.17 -3.9 - -13.1 - - -3.5 -
2 - -0.028 | -0.021 - 3 - - - - -
3 - -0.46 -0.62 - - - -1.3 - - -
4 - -0.11 -0.30 - 3 - - - - -
5 - -0.064 -0.58 - - - -7E-3 - - -
6 - -6E-5 -2E-4 - - - - - - -
7 - -8E-4 -1E-4 - - - - - - -
8 - -5E-5 -9E-4 - - - - - - -
9 - -0.18 -0.30 - - - - - - -
10 - - - - - - - - - -
11 - -0.57 - - - - - - - -
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Table 6. Annual average general head boundary (GHB) condition flux (mgd) in the ECFTX transient
model (2003-2014).

GHB North GHB South GHB East GHB West Total
Layer influx | outflux influx | outflux influx | outflux influx | outflux influx | outflux
mgd
February 2020 calibration (calib0)
1 14 -3.0 21 -16 - - - - 35 -19
2 195 -29 0.12 -0.37 0.06 -1E-4 74 -0.19 268 -30
3 439 -221 28 -54 16 -83 3.6 -125 486 -482
4 126 -54 9.8 -21 9.8 -0.63 90 -37 236 -112
5 98 -8.1 292 -1.4 84 -30 87 -24 561 -64
6 1.3 -0.04 70 -7E-3 - - 14 - 85 -0.05
7 1.4 -0.63 11 -9E-5 37 -0.03 20 - 68 -0.67
8 5E-3 -0.03 2.5 - 34 -6E-4 - - 36 -0.03
9 50 -5.5 - - 41 -69 6.2 -6.7 97 -82
10 - - - - - - - - - -
11 2.4 -1.1 - - 25 -155 5.2 -17 33 -172
HAS Kh change calibration (calibHAS)
1 14 -3.0 21 -16 - - - - 35 -19
2 195 -29 0.08 -0.43 0.06 -1E-4 74 -0.19 268 -30
3 439 -221 28 -54 16 -83 3.6 -125 486 -482
4 126 -54 9.7 -21 10 -0.63 90 -37 236 -112
5 98 -8.1 292 -1.5 84 -30 87 -24 561 -64
6 1.3 -0.04 70 -7E-3 - - 14 - 85 -0.05
7 1.4 -0.63 11 -9E-5 37 -0.03 20 - 68 -0.67
8 5E-3 -0.03 25 - 34 -6E-4 - - 36 -0.03
9 50 -5.5 - - 41 -69 6.2 -6.7 97 -82
10 - - - - - - - - - -
11 2.4 -1.1 - - 25 -155 5.2 -17 33 -172
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Figure 1. ECFTX Initial Layer 2 Kx Array
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Appendix B — Simulated Versus Observed Water Level Hydrographs
at Target Wells in Focus Area
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Figure 5. Simulated and observed flow at Alexander Spring for the model simulation period.
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Figure 6. Simulated and observed flow at Apopka Spring for the model simulation period.
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Figure 7. Simulated and observed flow at Buckhorn Main Spring for the model simulation period.
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Figure 8. Simulated and observed flow at Bugg Spring for the model simulation period.
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Figure 9. Simulated and observed flow at Chassahowitza Spring for the model simulation
period.
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Figure 10. Simulated and observed flow at Crystal Main Spring for the model simulation period.
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Figure 11. Simulated and observed flow at Gum Spring for the model simulation period.
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Figure 12. Simulated and observed flow at Homosassa Spring for the model simulation period.
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Figure 13. Simulated and observed flow at Lithia Spring for the model simulation period.
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Simulated and observed flow at Rainbow Spring for the model simulation period.
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Figure 15. Simulated and observed flow at Rock Springs for the model simulation period.
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Figure 16. Simulated and observed flow at Sanlando Spring for the model simulation period.
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Figure 17. Simulated and observed flow at Starbuck Spring for the model simulation period.
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Figure 18. Simulated and observed flow at Sulphur Spring for the model simulation period.
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Figure 19. Simulated and observed flow at Volusia Blue Spring for the model simulation period.
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Figure 20. Simulated and observed flow at Weeki Wachee Spring for the model simulation
period.
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Figure 21. Simulated and observed flow at Wekiva Falls for the model simulation period.
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Figure 22. Simulated and observed flow at Wekiwa Spring for the model simulation period.
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Figure 23. Hydraulic conductivity values for model layer 1 in the focus area.
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Figure 24.

Hydraulic conductivity values for model layer 2 in the focus area.
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Figure 25. Leakance coefficient for model layer 2 in the focus area.
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Figure 26. Hydraulic conductivity values for model layer 3 in the focus area.
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Figure 27. Hydraulic conductivity values for model layer 4 in the focus area.
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Figure 28. Hydraulic conductivity values for model layer 5 in the focus area.
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Figure 29. Hydraulic conductivity values for model layer 6 in the focus area.
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Figure 30. Leakance coefficient for model layer 6 in the focus area.
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Figure 31. Hydraulic conductivity values for model layer 7 in the focus area.
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Figure 32. Hydraulic conductivi

ty values for model layer 8 in the focus area.
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Figure 33. Leakance coefficient for model layer 8 in the focus area.
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Figure 34. Hydraulic conductivity values for model layer 9 in the focus area.
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Figure 35. Hydraulic conductivity values for model layer 10 in the focus area.
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Figure 36. Leakance coefficient for model layer 10 in the focus area.
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Figure 37. Hydraulic conductivity values for model layer 11 in the focus area.
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Figure 38. Spatial distribution of mean error for the SA targets within the focus area in the ECFTX

transient recharge sensitivity simulation without any recharge rate adjustment (left) and with
recharge adjustment (right).
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Figure 39. Spatial distribution of mean error for the UFA targets within the focus area in the ECFTX
transient recharge sensitivity simulation without any recharge rate adjustment (left) and with
recharge adjustment (right).
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Figure 40. Spatial distribution of mean error for the LFA targets within the focus area in the ECFTX
transient recharge sensitivity simulation without any recharge rate adjustment (left) and with
recharge reduced in the focus area (right).
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Figure 41. Mean simulated versus observed water levels for the SA within the focus area for
simulation without recharge adjustment (left) and with recharge reduced in the focus area
(right). (Note: Solid line is 1:1 relation between simulated and observed water levels; dashed
line is linear regression of simulated versus observed water levels from target wells)
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Figure 42. Mean simulated versus observed water levels for the UFA within the focus area for
simulation without recharge adjustment (left) and with recharge reduced in the focus area (right).
(Note: Solid line is 1:1 relation between simulated and observed water levels; dashed line is linear
regression of simulated versus observed water levels from target wells)
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Figure 43. Mean simulated versus observed water levels for the LFA within the focus area for
simulation without recharge adjustment (left) and with recharge reduced in the focus area (right).
(Note: Solid line is 1:1 relation between simulated and observed water levels; dashed line is linear
regression of simulated versus observed water levels from target wells)
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Figure 44. Mean simulated versus observed flow for magnitude 1 and 2 springs within the ECFTX
model domain for simulation without recharge adjustment (top) and with recharge reduced in the
focus area (bottom). (Note: Solid line is 1:1 relation between simulated and observed head
differences; dashed line is linear regression of simulated versus observed head differences).
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Figure 45. Hydraulic conductivity values in layer 1 in the focus area for ECFTX transient simulation
without recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 46. Horizontal hydraulic conductivity values for model layer 2 in the focus area without

recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 47. Leakance coefficient distribution in model layer 2 without recharge adjustment (left)
and with recharge reduced by 20% in the focus area (right).
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Figure 48. Horizontal hydraulic conductivity values for model layer 3 in the focus area without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 49. Horizontal hydraulic conductivity values for model layer 4 in the focus area without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 50. Horizontal hydraulic conductivity values for model layer 5 in the focus area without

recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 51. Horizontal hydraulic conductivity values for model layer 6 in the focus area without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).

204



7y

Y %

Recharge Reduced by 20% in Focus Area

No Recharge Adjustment

1Y

B < 1.0e-6

I 1.0e-06 - 5.0e-06
[ 5.0¢-06 - 1.0e-05
[ 1.0e-05 - 5.0e-05
[ 5.0e-05 - 1.0e-04

ECFTX - Leakance Coefficient (d-1) - Layer 6

[110e-04-50e-04 []005-01 [ 10-50 [ FocusArea
[15.0e-04-1.0e-03 [ O0.1-05 I 50 - 100 Jcrwi

[11.0e-03-5.0e-03 [ 0.5-1 I 100 - 500 "1 ECFTX Model Domain N
[150e-03-10e02 [l 1-5 I 500 - 1,000 7" County Boundaries
[Jo.01-005 s -10 I 1,000 - 18,000 o 5 10

Miles

Figure 52. Leakance coefficient distribution in model layer 6 without recharge adjustment (left)
and with recharge reduced by 20% in the focus area (right).

205




7y

No Recharge Adjustment

Y %

Recharge Reduced by 20% in Focus Area

[ 5.0e-06 - 1.0e-05  [__| 1.0e-03 - 5.0e-03
7] 1.0e-05-5.0e-05 [___]5.0e-03 - 1.0e-02
[[]5.0e-05-1.0e-04 [__]0.01-0.05

ECFTX - Hydraulic Conductivity (ft/d) - Layer 7
Czapn | <1.0e-6 [ 1.0e-04 - 5.0e-04
% B 100-06-500-06 [ 50e-04-1.0e-03

[ Jo05-01 [ 10-50 Jrocus Area

[Jo1-05 [EM50-100 Jcrw

[ Jo5-1 I 100 - 500 [~ "1 ECFTX Model Domajg

-5 I 500 - 1,000 {221 County Boundaries J\

B 5- 10 I 1,000 - 18,000 0 M: 10
les

Figure 53. Horizontal hydraulic conductivity values for model layer 7 in the focus area without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 54. Horizontal hydraulic conductivity values for model layer 8 in the focus area without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 55. Leakance coefficient distribution in model layer 8 without recharge adjustment (left)
and with recharge reduced by 20% in the focus area (right).
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Figure 56. Horizontal hydraulic conductivity values for model layer 9 in the focus area without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 57. Horizontal hydraulic conductivity values for model layer 10 in the focus area without

recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 58. Leakance coefficient distribution in model layer 10 without recharge adjustment (left)
and with recharge reduced by 20% in the focus area (right).
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Figure 59. Horizontal hydraulic conductivity values for model layer 11 in the focus area without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 60. UFA Transmissivity distribution in the focus area for ECFTX transient simulation
without recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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Figure 61. LFA Transmissivity distribution in the focus area for ECFTX transient simulation without
recharge adjustment (left) and with recharge reduced by 20% in the focus area (right).
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