Statistical Evaluations

Central Florida Coordination Area Tools Development Team Workshop July 29, 2010

Presented by Jill Hood, P.G.; Senior Professional Geologist Southwest Florida Water Management District

Statistical Evaluations

Objectives:

- Statistical and numerical models will provide separate lines of evidence to corroborate and improve confidence in each model's results.
- Multiple lines of evidence will yield a more robust characterization of the hydrologic system in the CFCA, ultimately leading to better management decisions.

Statistical Evaluations

Statistical Trends in Hydrologic Data – evaluating trends at single sites and correlations between sites.

Data Mining – evaluating cause and effect relationships.

Statistical Trends in Hydrologic Data

- Exploratory Data Analysis.
- Identify Breakpoints in LOWESS scatterplots.
- Examine for Seasonal and Serial Correlation.
- Trend Analysis for Individual Sites.
- Cluster Analysis for Evaluating Spatial Groupings of Trends.

Hydrologic Database

 Compiled from SJRWMD,
 SWFWMD, and
 USGS databases

120 sites: 62 wells,
 6 springs, 47 lakes,
 and 5 rain gages

Trend Analysis of Entire Time Series vs. Segments of Time

Segment	Mann- Kendall p- value	Result (Reject Ho if p < 0.1)	
Entire Time Series	0.128	Fail to Reject Ho	
Segment 1	0.0002	Reject Ho; Man-Kendall Regression Sen Slope: -0.146 ft/yr	
Segment 2	0.125	Fail to Reject Ho	
Segment 3	0.5526	Fail to Reject Ho	
Segment 2 & 3	0.1282	Fail to Reject Ho	

Therefore, a statistically significant trend exists through 7/1/81.

Note: Elimination of BP2 would have caused no change in conclusions.

Statistical Trends in Hydrologic Data

CENTRAL FLORIDA COORDINATION AREA

Statistical Trends in Hydrologic Data

Statistical Trends in Hydrologic Data

Next Steps:

- Explain Data Clusters
 - Hydrogeologic Setting
 - Climate
 - Pumping
 - Land Use Changes

What is Data Mining?

- Data Mining: the search for valuable knowledge in massive volumes of data.
- Data Mining Tool Box:
 - Signal processing, statistics, machine learning, chaos theory, advanced visualization.
 - Artificial Neural Networks (ANN) models one approach to machine learning.

Data Mining and MODFLOW

- **Two Approaches Similar Goals**
- Can be complementary.
- Data mining can provide great insight into hydrologic system behavior.
- Insights can be used to guide development and evaluation of MODFLOW model.

Hydrologic Database

 Compiled from SJRWMD, SWFWMD, SFWMD, USGS, NOAA, Orange County, and Seminole County databases

963 sites: 470 wells,
 22 springs, 307 lakes,
 143 rain gages, and
 21 air temperature sites

Data Mining

- Historical data analysis -Database compilation and QA; Exploratory Data Analysis; Develop site-specific Artificial Neural Network (ANN) models.
- II. Decision support system (DSS) incorporating a regional data mining model Spatial interpolation of multiple ANN models to quantify regional groundwater system behavior.
- III. Comparison with physics-based groundwater model
 Compare ANN results with MODFLOW model assessments to strengthen model predictive capabilities based on system behavior inferred from historical data.

Artificial Neural Networks

Results from pilot study indicate the effectiveness of ANNs for hydrologic simulation.

Decision Support System

- An Excel tool built around ANN models.
- Composed of multiple ANNbased "submodels" to predict regional groundwater system.
- Fast run time and user friendly.

Tabs: Info, <u>Map</u>, Parameters; 3DVis, Output, Database1, Database2, Release Notes

Decision Support System

1&21	496	1&3 N	644
1&2	-0.354	1&3 R	0.426
1&2 R	2 0.125	1&3 R ²	0.181
1&31	644	 2&3 N	346
1&3 F	0.426	2&3 R	0.003
1&3 R	² 0.181	2&3 R ²	0.000

Comparison of ANNs and Models

- Compare site-specific ANN results (key lakes, wells, and springs) to same sites simulated by numerical model.
- ANN and numerical models will provide separate lines of evidence, providing opportunity to corroborate and improve confidence in each model's results.
- Multiple lines of evidence will yield a more robust characterization of the hydrologic system in the CFCA, ultimately leading to better management decisions.

Data Mining

Status:

- Finalizing Database of Stressors (Water Use)
- Completing Site-Specific ANNs

Next Steps:

Compare ANN's and Numerical Models

Data Mining

Report complete by September 2011.

